Introduction to NanoBSD
Table of Contents
	1. Introduction to NanoBSD
	2. NanoBSD Howto	2.1. The Design of NanoBSD
	2.2. Building a NanoBSD Image	2.2.1. Options When Building a NanoBSD Image
	2.2.2. The Complete Image Building Process

	2.3. Customizing a NanoBSD Image	2.3.1. Configuration Options	2.3.1.1. General Customization
	2.3.1.2. Booting Options
	2.3.1.3. Disk Image Creation

	2.3.2. Custom Functions
	2.3.3. Adding Packages
	2.3.4. Configuration File Example

	2.4. Updating NanoBSD	2.4.1. Using ftp(1)
	2.4.2. Using ssh(1)
	2.4.3. Using nc(1)

	Index

List of Examples
	1. Making Persistent Changes to
	 /etc/resolv.conf

Introduction to NanoBSD
Daniel Gerzo

Revision: f2a33a330dCopyright © 2006 The FreeBSD Documentation Project
Legal NoticeLast modified on 2021-01-19 03:16:17 +0100 by Daniel Ebdrup Jensen.Abstract
This document provides information about the
	NanoBSD tools, which can be used to
	create FreeBSD system images for embedded applications, suitable
	for use on a USB key, memory card or other mass
	storage media.

 [

	 Split HTML
	
 /
 Single HTML
]
 1. Introduction to NanoBSD
NanoBSD is a tool developed by
	 Poul-Henning Kamp <phk@FreeBSD.org> and now maintained by Warner Losh <imp@FreeBSD.org>. It
	 creates a FreeBSD system image for embedded applications,
	 suitable for use on a USB key, memory card or other mass
	 storage media.
It can be used to build specialized install images, designed
 for easy installation and maintenance of systems commonly called
 “computer appliances”. Computer appliances have
 their hardware and software bundled in the product, which means
 all applications are pre-installed. The appliance is plugged
 into an existing network and can begin working (almost)
 immediately.
The features of NanoBSD
 include:
	Ports and packages work as in FreeBSD — Every single
	 application can be installed and used in a
	 NanoBSD image, the same way as in
	 FreeBSD.

	No missing functionality — If it is possible to do
	 something with FreeBSD, it is possible to do the same thing
	 with NanoBSD, unless the specific
	 feature or features were explicitly removed from the
	 NanoBSD image when it was
	 created.

	Everything is read-only at run-time — It is safe
	 to pull the power-plug. There is no necessity to run
	 fsck(8) after a non-graceful shutdown of the
	 system.

	Easy to build and customize — Making use of just
	 one shell script and one configuration file it is possible
	 to build reduced and customized images satisfying any
	 arbitrary set of requirements.

2. NanoBSD Howto
2.1. The Design of NanoBSD
Once the image is present on the medium, it is possible to
	boot NanoBSD. The mass storage
	medium is divided into three parts by default:
	Two image partitions: code#1
	 and code#2.

	The configuration file partition, which can be mounted
	 under the /cfg directory
	 at run time.

These partitions are normally mounted read-only.
The /etc and
	/var directories are
	md(4) (malloc) disks.
The configuration file partition persists under the
	/cfg directory. It
	contains files for /etc
	directory and is briefly mounted read-only right after the
	system boot, therefore it is required to copy modified files
	from /etc back to the
	/cfg directory if changes
	are expected to persist after the system restarts.
Example 1. Making Persistent Changes to
	 /etc/resolv.conf
vi /etc/resolv.conf
[...]
mount /cfg
cp /etc/resolv.conf /cfg
umount /cfg

Note:
The partition containing
	 /cfg should be mounted
	 only at boot time and while overriding the configuration
	 files.
Keeping /cfg mounted at all times
	 is not a good idea, especially if the
	 NanoBSD system runs off a mass
	 storage medium that may be adversely affected by a large
	 number of writes to the partition (like when the filesystem
	 syncer flushes data to the system disks).

2.2. Building a NanoBSD Image
A NanoBSD image is built using
	a simple nanobsd.sh shell script, which
	can be found in the
	/usr/src/tools/tools/nanobsd
	directory. This script creates an image, which can be copied
	on the storage medium using the dd(1) utility.
The necessary commands to build a
	NanoBSD image are:
cd /usr/src/tools/tools/nanobsd [image: 1]
sh nanobsd.sh [image: 2]
cd /usr/obj/nanobsd.full [image: 3]
dd if=_.disk.full of=/dev/da0 bs=64k [image: 4]
	[image: 1]
	Change the current directory to the base directory of
	 the NanoBSD build
	 script.

	[image: 2]
	Start the build process.

	[image: 3]
	Change the current directory to the place where the
	 built images are located.

	[image: 4]
	Install NanoBSD onto the
	 storage medium.

2.2.1. Options When Building a NanoBSD Image
When building a NanoBSD
		image, several build options can be passed to
		nanobsd.sh on the
		command line. These options can have a significant
		impact on the build process.
Some options are for verbosity purposes:
	-h: prints the help
		 summary page.

	-q: makes output quieter.

	-v: makes output more
		 verbose

Some other options can be used to restrict the
		building process. Sometimes it is not necessary to
		rebuild everything from sources, especially if an
		image has already been built, and only little change
		is made.
	-k: do not build the
		 kernel

	-w: do not build world

	-b: do not build either
		 kernel and world

	-i: do not build a disk
		 image at all. As a file will not be created, it
		 will not be possible to dd(1) it to a
		 storage media.

	-f: do not build a disk
		 image of the first partition (which is useful for
		 upgrade purposes)

	-n: add -DNO_CLEAN
		 to buildworld,
		 buildkernel. Also,
		 all the files that have already been built in a
		 previous run are kept.

A configuration file can be used to tweak as
		 many elements as desired. Load it with -c
The last options are:
	-K: do not install a kernel.
		 A disk image without a kernel will not be able
		 to achieve a normal boot sequence.
		

2.2.2. The Complete Image Building Process
The complete image building process is going through
		a lot of steps. The exact steps taken will depend on the
		chosen options when starting the script. Assuming the
		script is run with no particular options, this is what
		will happen.
	run_early_customize:
		commands that are defined in a supplied configuration
		file.

	clean_build: Just cleans
		the build environment by deleting the previously built files.

	make_conf_build: Assemble
		make.conffrom the CONF_WORLD and
		CONF_BUILD variables.

	build_world: Build world.

	build_kernel: Build the
		kernel files.

	clean_world: Clean the
		destination directory.

	make_conf_install:
		Assemble make.conf from the CONF_WORLD
		and CONF_INSTALL variables.

	install_world: Install
		all files built during buildworld.

	install_etc: Install
		the necessary files in the /etc
		directory, based on the make distribution
		command.

	setup_nanobsd_etc: the
		first configuration specific to NanoBSD
		takes place at this stage. The /etc/diskless is
		created and the root filesystem is defined as read-only.

	install_kernel: the
		kernel and modules files are installed.

	run_customize: all
		the customizing routines defined by the user will be called.

	setup_nanobsd: a special
		configuration directory layout is setup. The
		/usr/local/etc gets moved to
		/etc/local and a symbolic link is
		created back from /etc/local to
		/usr/local/etc.

	prune_usr: the empty
		directories from /usr are removed.

	run_late_customize:
		the very last custom scripts can be run at this point.

	fixup_before_diskimage:
		List all installed files in a metalog

	create_diskimage: creates
		the actual disk image, based on the disk geometries provides
		parameters.

	last_orders: does nothing
		for now.

2.3. Customizing a NanoBSD Image
This is probably the most important and most interesting
	feature of NanoBSD. This is also
	where you will be spending most of the time when
	developing with NanoBSD.
Invocation of the following command will force the
	nanobsd.sh to read its configuration from
	myconf.nano located in the current
	directory:
sh nanobsd.sh -c myconf.nano
Customization is done in two ways:
	Configuration options

	Custom functions

2.3.1. Configuration Options
With configuration settings, it is possible to configure
	 options passed to both the
	 buildworld and
	 installworld stages of the
	 NanoBSD build process, as well as
	 internal options passed to the main build process of
	 NanoBSD. Through these options
	 it is possible to cut the system down, so it will fit on as
	 little as 64MB. You can use the configuration options to
	 trim down FreeBSD even more, until it will consists of just the
	 kernel and two or three files in the userland.
The configuration file consists of configuration
	 options, which override the default values. The most
	 important directives are:
	NANO_NAME — Name of build
	 (used to construct the workdir names).

	NANO_SRC — Path to the
	 source tree used to build the image.

	NANO_KERNEL — Name of
	 kernel configuration file used to build kernel.

	CONF_BUILD — Options passed
	 to the buildworld stage of
	 the build.

	CONF_INSTALL — Options
	 passed to the installworld
	 stage of the build.

	CONF_WORLD — Options passed
	 to both the buildworld and
	 the installworld stage of the
	 build.

	FlashDevice — Defines what
	 type of media to use. Check
	 FlashDevice.sub for more
	 details.

There are many more configuration options that could
		be relevant depending upon the kind of
		NanoBSD that is desired.
2.3.1.1. General Customization
There are three stages, by design, at which
		it is possible to make changes that affect the
		building process, just by setting up a variable in the
		provided configuration file:
	run_early_customize:
		before anything else happens.

	run_customize: after all
		the standard files have been laid out

	run_late_customize: at
		the very end of the process, just before the actual
		NanoBSD image is built.

To customize a NanoBSD image, at any of these steps,
		it is best to add a specific value to one of the corresponding
		variables.
The NANO_EARLY_CUSTOMIZE variable is
		used at the first step of the building process. At this point,
		there is no example as to what can be done using that variable,
		but it may change in the future.
The NANO_CUSTOMIZE variable is used
		after the kernel, world and etc configuration files have been
		installed, and the etc files have been setup as to be a
		NanoBSD installation. So it is the correct step in the
		building process to tweak configuration options and add
		packages, like in the cust_nobeastie example.
The NANO_LATE_CUSTOMIZE variable is
		used just before the disk image is created, so it is the very
		last moment to change anything. Remember that the
		setup_nanobsd routine already executed and
		that the etc, conf
		and cfgdirectories and subdirectories are
		already modified, so it is not time to change them at this
		point. Rather, it is possible to add or remove specific files.
2.3.1.2. Booting Options
There are also variables that can change the way the
		NanoBSD image boots. Two options are passed to
		boot0cfg(8) to initialize the boot sector of the disk image:
	NANO_BOOT0CFG

	NANO_BOOTLOADER

With NANO_BOOTLOADER a bootloader
		file can be chosen. The most common possible options are between
		boot0sio and boot0
		depending on whether the appliance has a serial port or not. It is best
		to avoid supplying a different bootloader, but it is possible.
		To do so, it is best to have checked the
		FreeBSD Handbook
		chapter on the boot process.
With NANO_BOOT0CFG, the booting
		process can be tweaked, like selecting on which partition the
		NanoBSD image will actually boot.
		It is best to check the boot0cfg(8) page before changing
		the default value of this variable. One option that could be
		interesting to change is the timeout of the booting procedure.
		To do so, the NANO_BOOT0CFG variable can be
		changed to "-o packet -s 1 -m 3 -t 36".
		That way the booting process would start after approximately 2
		seconds; because it is rare that waiting 10 seconds before
		actually booting is desired.
Good to know: the NANO_BOOT2CFG
		variable is only used in the cust_comconsole
		routine that can be called at the
		NANO_CUSTOMIZE step if the appliance has a
		serial port and all console input and output has to take place through
		it. Be sure to check the relevant parameters of the serial
		port, as setting a bad parameter value can make it useless.
2.3.1.3. Disk Image Creation
In the end of the boot process is the disk image
		creation. With this step, the NanoBSD
		script provides a file that can simply be copied onto a disk
		for the appliance, and that will make it boot and start.
There are many variable that need to be set just right
		for the script to produce a usable disk image.
	The NANO_DRIVE variable must be set
		to the drive name of the media at runtime. Usually, the
		default value ada0, which represents the first
		IDE/ATA/SATA
		device on the appliance is expected to be the correct one, but
		a different type of storage could also be used - like a USB
		key, in which case, it would rather be da0.

	The NANO_MEDIASIZE variable must be
		set to the size (in 512 bytes sectors) of the storage media
		that will be used. If you set it wrong, it is possible that
		the NanoBSD image will not boot
		at all, and a message at boot time will be warning about
		incorrect disk geometry.

	The /etc, /var,
		and /tmp directories are allocated as
		md(4) (malloc) disks at boot time; so their sizes can be
		tailored to suit the appliance needs. The NANO_RAM_ETCSIZE
		variable sets the size of the /etc; and the
		NANO_RAM_TMPVARSIZE variable sets the size of
		both the /var and /tmp
		directory, as /tmp is symbolically linked to
		/var/tmp. By default, both malloc disks
		sizes are set at 20MB each. They can always be changed, but
		usually the /etc does not grow too much
		in size, so 20MB is a good starting point, whereas the
		/var and especially /tmp
		can grow much larger if not careful about it. For
		memory constrained systems, smaller filesystem sizes
		may be chosen.
		

	As NanoBSD is
		mainly designed to build a system image for an
		appliance, it is assumed that the storage media used
		will be relatively small. For that reason,
		the filesystem that is laid out is configured to have
		a small block size (4Kb) and a small fragment size (512b).
		The configuration options of the filesystem can be
		modified through the NANO_NEWFS
		variable, but the syntax must respect the
		newfs(8) command format. Also, by default, the
		filesystem has Soft Updates enabled. The
		FreeBSD Handbook
		can be checked about this.

	The different partition sizes can be set through the
		use of NANO_CODESIZE,
		NANO_CONFSIZE, and NANO_DATASIZE
		as a multiple of 512 bytes sectors.
		NANO_CODESIZE defines the size of the first
		two image partitions: code#1 and
		code#2. They have to be big enough to hold
		all the files that will be produced as a result of the
		buildworld and buildkernel
		processes. NANO_CONFSIZE defines the size
		of the configuration file partition, so it does not need to be
		very big; but do not make it so small that it will not hold all
		configuration files. Finally, NANO_DATASIZE
		defines the size of an optional partition, that can be used
		on the appliance. The last partition can be used,
		for example, to keep files created on the fly on disk.

2.3.2. Custom Functions
It is possible to fine-tune
	 NanoBSD using shell functions in
	 the configuration file. The following example illustrates
	 the basic model of custom functions:
cust_foo () (
	echo "bar=baz" > \
		${NANO_WORLDDIR}/etc/foo
)
customize_cmd cust_foo
A more useful example of a customization function is the
	 following, which changes the default size of the
	 /etc directory from 5MB to 30MB:
cust_etc_size () (
	cd ${NANO_WORLDDIR}/conf
	echo 30000 > default/etc/md_size
)
customize_cmd cust_etc_size
There are a few default pre-defined customization
	 functions ready for use:
	cust_comconsole — Disables
	 getty(8) on the VGA devices (the
	 /dev/ttyv* device nodes) and
	 enables the use of the COM1 serial port as the system
	 console.

	cust_allow_ssh_root — Allow
	 root to login
	 via sshd(8).

	cust_install_files —
	 Installs files from the
	 nanobsd/Files
	 directory, which contains some useful scripts for system
	 administration.

2.3.3. Adding Packages
Packages can be added to a NanoBSD
		image, to provide specific functionalities on the
		appliance. To do so, either:
	Add the cust_pkgng to the
		NANO_CUSTOMIZE variable, or

	Add a 'customize_cmd cust_pkgng'
		command in a customized configuration file.

Both methods achieve the same result: launching
		the cust_pkgng routine. This routine
		will go through NANO_PACKAGE_DIR
		directory to find either all packages or just the list of
		packages in the NANO_PACKAGE_LIST variable.
It is common, when installing applications through
		pkg on a standard FreeBSD environment, that the install
		process puts configuration files, in the
		usr/local/etc directory, and
		startup scripts in the /usr/local/etc/rc.d
		directory. So, after the required packages have been
		installed, they need to be configured in order
		for them to start right out of the box. To do so,
		the necessary configuration files have to be installed in the
		correct directories. This can be achieved by writing
		dedicated routines or the generic cust_install_files
		routine can be used to lay out files properly from the
		/usr/src/tools/tools/nanobsd/Files directory.
		Usually a statement, sometimes multiple statements,
		in the /etc/rc.conf also needs to be
		added for each package.
2.3.4. Configuration File Example
A complete example of a configuration file for building
	 a custom NanoBSD image can
	 be:
NANO_NAME=custom
NANO_SRC=/usr/src
NANO_KERNEL=MYKERNEL
NANO_IMAGES=2

CONF_BUILD='
WITHOUT_KLDLOAD=YES
WITHOUT_NETGRAPH=YES
WITHOUT_PAM=YES
'

CONF_INSTALL='
WITHOUT_ACPI=YES
WITHOUT_BLUETOOTH=YES
WITHOUT_FORTRAN=YES
WITHOUT_HTML=YES
WITHOUT_LPR=YES
WITHOUT_MAN=YES
WITHOUT_SENDMAIL=YES
WITHOUT_SHAREDOCS=YES
WITHOUT_EXAMPLES=YES
WITHOUT_INSTALLLIB=YES
WITHOUT_CALENDAR=YES
WITHOUT_MISC=YES
WITHOUT_SHARE=YES
'

CONF_WORLD='
WITHOUT_BIND=YES
WITHOUT_MODULES=YES
WITHOUT_KERBEROS=YES
WITHOUT_GAMES=YES
WITHOUT_RESCUE=YES
WITHOUT_LOCALES=YES
WITHOUT_SYSCONS=YES
WITHOUT_INFO=YES
'

FlashDevice SanDisk 1G

cust_nobeastie() (
	touch ${NANO_WORLDDIR}/boot/loader.conf
	echo "beastie_disable=\"YES\"" >> ${NANO_WORLDDIR}/boot/loader.conf
)

customize_cmd cust_comconsole
customize_cmd cust_install_files
customize_cmd cust_allow_ssh_root
customize_cmd cust_nobeastie
All the build and install compilation options can be found in
	the src.conf(5) man page, but not all options can or should be
	used when building a NanoBSD image.
	The build and install options should be defined according to the
	needs of the image being built.
For example, the ftp client and server might not be needed.
	Adding WITHOUT_FTP=TRUE to a configuration file
	in the CONF_BUILD section will avoid having
	them built. Also, if the NanoBSD
	appliance will not be used to build programs then it is possible
	to add the WITHOUT_BINUTILS=TRUE in the
	CONF_INSTALL section; but not
	in the CONF_BUILD section as they will be
	used to build the NanoBSD image.
Not building a particular set of programs —
	through a compilation option — shortens the overall building
	time and lowers the required size for the disk image,
	whereas not installing the same specific set of programs
	does not lower the overall building time.
2.4. Updating NanoBSD
The update process of NanoBSD
	is relatively simple:
	Build a new NanoBSD image,
	 as usual.

	Upload the new image into an unused partition of a
	 running NanoBSD
	 appliance.
The most important difference of this step from the
	 initial NanoBSD installation is
	 that now instead of using _.disk.full
	 (which contains an image of the entire disk), the
	 _.disk.image image is installed
	 (which contains an image of a single system
	 partition).

	Reboot, and start the system from the newly installed
	 partition.

	If all goes well, the upgrade is finished.

	If anything goes wrong, reboot back into the previous
	 partition (which contains the old, working image), to
	 restore system functionality as fast as possible. Fix any
	 problems of the new build, and repeat the process.

To install new image onto the running
	NanoBSD system, it is possible to
	use either the updatep1 or
	updatep2 script located in the
	/root directory, depending from which
	partition is running the current system.
According to which services are available on host serving
	new NanoBSD image and what type of
	transfer is preferred, it is possible to examine one of these
	three ways:
2.4.1. Using ftp(1)
If the transfer speed is in first place, use this
	 example:
ftp myhost
get _.disk.image "| sh updatep1"
2.4.2. Using ssh(1)
If a secure transfer is preferred, consider using this
	 example:
ssh myhost cat _.disk.image.gz | zcat | sh updatep1
2.4.3. Using nc(1)
Try this example if the remote host is not running
	 neither ftpd(8) or sshd(8) service:
	At first, open a TCP listener on host serving the
	 image and make it send the image to client:
myhost# nc -l 2222 < _.disk.image
Note:
Make sure that the used port is not blocked to
		receive incoming connections from
		NanoBSD host by
		firewall.

	Connect to the host serving new image and execute
	 updatep1 script:
nc myhost 2222 | sh updatep1

Index
N
	NanoBSD, Introduction to NanoBSD
	

OEBPS/trademarks.xhtml
FreeBSD is a registered trademark of
 the FreeBSD Foundation.

Many of the designations used by
 manufacturers and sellers to distinguish their products are claimed
 as trademarks. Where those designations appear in this document,
 and the FreeBSD Project was aware of the trademark claim, the
 designations have been followed by the “™” or the
 “®” symbol.

