MIT Scheme User’s Manual

Edition 1.89

for Scheme Release 7.7.1
17 June 2002

by Stephen Adams

Chris Hanson
and the MIT Scheme Team

Copyright (©) 1991-2002 Massachusetts Institute of Technology

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free

Documentation License".

Introduction 1

Introduction

This document describes how to install and use MIT Scheme, the UnCommon Lisp. It
gives installation instructions for all of the platforms that we support; complete documen-
tation of the command-line options and environment variables that control how Scheme
works; and rudimentary descriptions of how to interact with the evaluator, compile and
debug programs, and use the editor. The release notes are included as an appendix.

This document discusses many operating-system specific features of the MIT Scheme
implementation. In order to simplify the discussion, we use abbreviations to refer to some
operating systems. When the text uses the term unix, this means any of the unix systems
that we support, including GNU/Linux, *BSD, HP-UX, Ultrix, NeXT, and SunOS. The
term OS/2 means the IBM OS/2 operating system, version 2.1 or later. We use the term
Windows to collectively refer to the Microsoft Windows 32-bit operating systems: Windows
95, Windows 98, Windows ME, Windows NT, Windows 2000, and Windows XP. We use
the term PC to refer to any computer running OS/2 or Windows. Thus we consider a PC
to be a system with a DOs-like file system, using backslashes for directory separators, drive
letters, CR-LF line termination, and (potentially) the hideous 8.3 short filenames.

The primary distribution site for this software is
http://www.swiss.ai.mit.edu/projects/scheme/
ftp://ftp.swiss.ai.mit.edu/pub/mit-scheme/

Although our software is distributed from other sites and in other media, the complete
distribution and the most recent release is always available at our site.

To report bugs, send email to ‘bug-cscheme@zurich.ai.mit.edu’. Please include the
output of the identify-world procedure (see Section 2.1 [Basics of Starting Scheme],
page 9), so we know what version of the system you are using.

http://www.swiss.ai.mit.edu/projects/scheme/
ftp://ftp.swiss.ai.mit.edu/pub/mit-scheme/

MIT Scheme User’s Manual

Chapter 1: Installation 3

1 Installation

This chapter describes how to install MIT Scheme release 7.7. The release is supported
under several different operating systems: unix, OS/2, and Windows. Read the section
detailing the installation for the operating system that you are using.

1.1 Unix Installation

We will use as an example the installation for GNU/Linux. The installation for other
unix systems is similar.

MIT Scheme is distributed as a compressed ‘tar’ file. The tar file contains two directories,
called ‘bin’ and ‘1ib’. The ‘bin’ directory contains two executable files, ‘scheme’ and
‘bchscheme’. The ‘1ib’ directory contains one subdirectory, ‘1ib/mit-scheme’, that Scheme
uses while it is executing.

The goal of the installation is to put the executable files in a directory where they will be
executed as commands, and to put the library files in some convenient place where Scheme
can find them.

There are two ways to install this software: the conventional way in ‘/usr/local’, and
the alternative way, in locations of your choice. We encourage you to install this software
in ‘/usr/local’ if possible.

To install the software in ‘/usr/local’, do the following

cd /usr/local

rm -f bin/scheme bin/bchscheme

rm -rf lib/mit-scheme

gzip -cd scheme-7.7.1-ix86-gnu-linux.tar.gz | tar xvf -
After executing these commands, the executable files will be in ‘/usr/local/bin’, and the
library files will be in ‘/usr/local/lib/mit-scheme’. No further configuration is required.

To install the files in directories of your choice:
e First unpack the distribution:
mkdir temp
cd temp
gzip -cd scheme-7.7.1-ix86-gnu-linux.tar.gz | tar xvf -

e Next, move the contents of the ‘bin’ directory to somewhere convenient that is on your
execution path. For example, if you had a directory ‘~/bin’ on your path, you would
do this:

mv bin/* ~/bin/.

e Next, move or copy the ‘mit-scheme’ directory somewhere convenient. For example,

you could move it to your home directory:

mv lib/mit-scheme ~/.
Note that if you have unpacked the distribution on a different drive than the one you
plan to store the ‘mit-scheme’ directory on, you must use the command ‘cp —-pr’ rather
than ‘mv’.

e Next, you must tell Scheme where to find the ‘mit-scheme’ directory. This can be
done in one of two ways. The first way is to bind the environment variable MITSCHEME_
LIBRARY_PATH to the full path to the directory, e.g. in bash you would do

4 MIT Scheme User’s Manual

export MITSCHEME_LIBRARY_PATH="/mit-scheme

You should put this environment-variable binding in one of your shell init files, e.g. for
bash it might go in the ‘.bashrc’ file.

The second way is to use a command-line argument when invoking Scheme, e.g.
scheme -library ~/mit-scheme

e You should now be able to run MIT Scheme. See Chapter 2 [Running Scheme], page 9,
for more information.

1.2 Windows Installation

This section describes how to install MIT Scheme on Windows 95, Windows 98, Windows
Me, Windows NT 4.0, Windows 2000, or Windows XP. The software should also work on
older versions of Windows N'T, but we haven’t tested it there.

MIT Scheme is distributed as a self-installing executable. Installation of the software is
straightforward. Simply execute the downloaded file and answer the installer’s questions.
The installer will allow you to choose the directory in which MIT Scheme is to be installed,
and the name of the folder in which the shortcuts are to be placed.

To uninstall the software, open up the ‘Control Panel’, run ‘Add/Remove Programs’,
and double-click on ‘MIT Scheme 7.7’.

1.3 OS/2 Installation

This section describes how to install MIT Scheme on a machine running OS/2 2.1 or
later. This release of MIT Scheme has been tested only on OS/2 Warp 4.0. It was compiled
using IBM Visual Age C++ version 3.0 and the OS/2 Toolkit version 4.0.

1.3.1 OS/2 Installation Procedure

After unpacking the zip file, ‘0s2.zip’, you will have these directories containing the
following files:

‘exe’ The executable programs ‘scheme.exe’ and ‘bchschem.exe’.

‘d11’ The dynamic link libraries ‘blowfish.d1l’, ‘gdbm.d11’, and ‘md5.d11".
‘doc’ Documentation files in HTML.

‘1ib’ A directory containing the data files needed by Scheme when it is running.

Perform the following steps to install Scheme:

1. Move the executable files ‘scheme.exe’ and ‘bchschem.exe’ from ‘exe’ to any directory
that appears in your PATH environment variable. You may either add the ‘exe’ directory
to your path by editing ‘config.sys’ and rebooting, or you may move the files in ‘exe’
to an existing directory that is already on your PATH.

Depending on your needs, you may want to keep only one of these files; chances are
you’ll only be using one of them. Of course, you may also keep both programs around
if you think you might use them both. See Section 2.3 [Memory Usage], page 10, for
more information about the tradeoffs between these two programs.

Chapter 1: Installation 5

2. Move the dynamic link libraries from ‘d11’ to any directory that appears in your
LIBPATH environment variable. As above, you may either add ‘d11’ to your LIBPATH,
or move the files in ‘d11’ to a directory that is already on your LIBPATH.

3. You may move the ‘1ib’ directory anywhere you like. You may rename it to anything
you like. (Here at MIT, we use ‘c:\scheme\1ib’.) After you have chosen where it will
be located, set the MITSCHEME_LIBRARY_PATH environment variable in ‘config.sys’ to
be that location.

For example, if you decide to store the directory as ‘c:\schdata’, you would add the
following to ‘config.sys’

SET MITSCHEME_LIBRARY_PATH=C:\SCHDATA
(Remember that you must reboot OS/2 after editing ‘config.sys’ in order for the
changes to take effect.)
You can override the setting of this environment variable with the -1ibrary command-
line option to Scheme, for example:

scheme -library d:\myscm\mylib
If you supply a -library option, it is not necessary to have the environment variable
defined. For example, instead of editing ‘config.sys’, you might create a ‘.cmd’ file
to invoke Scheme and pass it the -library option automatically.

4. Optional: Move the ‘doc’ directory anywhere you like, or delete it if you do not want
to keep the documentation.

5. Optional: Consider setting some of the environment variables described below.

1.3.2 Environment Variables

This section documents several of the environment variables that Scheme uses, and gives
an example for each one. These are the environment variables that must usually be defined
when installing Scheme under OS/2. For complete documentation of all of the environment
variables used by Scheme, see Section 2.6 [Environment Variables|, page 16.

Note that environment variables are usually defined in the OS/2 ‘config.sys’ file. After

editing the ‘config.sys’ file, it is necessary to reboot OS/2 before the changes will take
effect.

MITSCHEME_LIBRARY_PATH
says where to find Scheme’s data files. This is the only required environ-
ment variable (but is not required when Scheme is invoked with the -library
command-line option).

SET MITSCHEME_LIBRARY_PATH=C:\SCHEME\LIB
MITSCHEME_INF_DIRECTORY
tells Scheme where to find debugging information for the runtime system. The

default value for this environment variable is a subdirectory ‘src’ located in the
directory specified by MITSCHEME_LIBRARY_PATH.

SET MITSCHEME_INF_DIRECTORY=C:\SCHEME\LIB\SRC

TMPDIR tells Scheme the name of a directory where it can store temporary files.
SET TMPDIR=C:\TMP

6 MIT Scheme User’s Manual

HOME tells Scheme where your “home” directory is located. This is where Scheme
looks for init files, and it is also what the ‘~/’ (or ‘*\\) filename prefix expands
to. If not specified, Scheme uses the root directory of the current drive.

SET HOME=C:\CPH

USER tells Scheme your user name. This is used for several purposes, including the
name that will be used as your email address.

SET USER=cph

SHELL tells Edwin what shell program to use in shell buffers and for running shell
commands. If not specified, this defaults to the standard OS/2 shell, ‘cmd. exe’.

SET SHELL=C:\4052251\40S2.EXE

1.4 Optional Configuration

As distributed, Scheme contains several large files. You might not need all of them, so
this section will tell you what each is for so that you can decide if you want to delete some
of them. Also, we will discuss the two different Scheme executables, which are each useful
in different situations; you should read this to decide which is right for you.

The Scheme runtime environment and associated tools are normally stored in bands,
which are large memory images stored in files (see Section 3.3 [World Images], page 28).
Scheme requires at least one band to work properly. The Scheme distribution includes two
bands. These bands are stored in the ‘1ib/mit-scheme’ directory on unix systems, and the
‘1ib’ directory on PC systems.

‘runtime.com’
The is the basic world image, and the smallest. It contains just the runtime
files. This is the band that is chosen when Scheme is invoked with no special
command-line options.

‘all.com’ This contains the runtime files, the native-code compiler, and Edwin. This
band is chosen when either the ~compiler or —edwin command-line options are
supplied.

Depending on your needs, you may not need both of these files. For example, if
you always want the full development environment, you might keep ‘all.com’ and delete
‘runtime.com’. Remember that you must keep at least one of these files to use Scheme.

In addition to bands, Scheme is distributed with two executable programs: ‘scheme’
(called ‘scheme.exe’ on PC systems), and ‘bchscheme’ (called ‘bchschem. exe’ on PC sys-
tems). Normally you will need only one of these files.

The only difference between these two programs is in how they handle garbage collection.
‘scheme’ allocates two memory heaps, and copies objects between the heaps to preserve
them. This means that most of the time the other heap is occupying valuable memory but
doesn’t hold any interesting data. ‘bchscheme’ allocates only one memory heap, creates a
disk file during garbage collection, copies objects into the file, then copies them back into
memory.

These programs provide you with some important performance trade-offs. If you have
plenty of memory and want the best performance, use ‘scheme’. If you don’t have enough

Chapter 1: Installation 7

memory, or if you want to use less memory and will accept slower performance, use
‘bchscheme’. One way to tell that you don’t have enough memory is to run ‘scheme’ for a
while and see if your machine is paging during garbage collection.

You might consider trying to use ‘scheme’ and letting the operating system’s paging
handle the lack of RAM. But usually you will find that using ‘bchscheme’ without paging is
much faster than using ‘scheme’ with paging. Of course, if you are using ‘bchscheme’ and
you're still paging, the best solution is to install more RAM.

MIT Scheme User’s Manual

Chapter 2: Running Scheme 9

2 Running Scheme

This chapter describes how to run MIT Scheme. It also describes how you can customize
the behavior of MIT Scheme using command-line options and environment variables.

2.1 Basics of Starting Scheme

Under unix and OS/2, MIT Scheme is invoked by typing
scheme

at your operating system’s command interpreter. Under Windows, MIT Scheme is invoked
by double-clicking on a shortcut. In either case, Scheme will load itself and print something
like this:

Scheme saved on Monday June 17, 2002 at 12:10:46 PM
Release 7.7.1
Microcode 14.9
Runtime 15.1

This information, which can be printed again by evaluating

(identify-world)
tells you the following version information. ‘Release’ is the release number for the entire
Scheme system. This number is changed each time a new version of Scheme is released.

‘Microcode’ is the version number for the part of the system that is written in C. ‘Runtime’
is the version number for the part of the system that is written in Scheme.

Following this there may be additional version numbers for specific subsystems. ‘SF’
refers to the scode optimization program sf, ‘Liar’ is the native-code compiler, ‘Edwin’ is
the Emacs-like text editor, and ‘6.001’ is the SICP compatibility package.

You can load the compiler by giving Scheme the —compiler option:
scheme -compiler

This option causes Scheme to use a larger constant space and heap, and to load the world
image containing the compiler.

2.2 Customizing Scheme

You can customize your setup by using a variety of tools:

e Command-line options. Many parameters, like memory usage and the location of
libraries, may be varied by command-line options. See Section 2.4 [Command-Line
Options|, page 11.

e Command scripts or batch files. You might like to write scripts that invoke Scheme
with your favorite command-line options. For example, you might not have enough
memory to run Edwin or the compiler with its default memory parameters (it will print
something like “Not enough memory for this configuration” and halt when started), so
you can write a shell script (unix), ‘.bat’ file (Windows), or ‘.cmd’ file (OS/2) that
will invoke Scheme with the appropriate ~heap and other parameters.

10 MIT Scheme User’s Manual

e Scheme supports init files: an init file is a file containing Scheme code that is loaded
when Scheme is started, immediately after the identification banner, and before the in-
put prompt is printed. This file is stored in your home directory, which is normally spec-
ified by the HOME environment variable. Under unix, the file is called ‘.scheme.init’;
on the PC it is called ‘scheme.ini’.

In addition, when Edwin starts up, it loads a separate init file from your home directory
into the Edwin environment. This file is called ‘.edwin’ under unix, and ‘edwin.ini’
on the PC (see Section 7.1 [Starting Edwin], page 59).

You can use both of these files to define new procedures or commands, or to change
defaults in the system.

The -no-init-file command-line option causes Scheme to ignore the
‘.scheme.init’ file (see Section 2.4 [Command-Line Options|, page 11).

e FEnvironment variables. Most microcode parameters, and some runtime system and
Edwin parameters, can be specified by means of environment variables. See Section 2.6
[Environment Variables], page 16.

e Icons. Under OS/2 and Windows, and with some window managers under X11, it is
possible to create icons that invoke Scheme with different parameters.

2.3 Memory Usage

Some of the parameters that can be customized determine how much memory Scheme
uses and how that memory is used. This section describes how Scheme’s memory is or-
ganized and used; subsequent sections describe command-line options and environment
variables that you can use to customize this usage for your needs.

Scheme uses four kinds of memory:
e A stack that is used for recursive procedure calls.

e A heap that is used for dynamically allocated objects, like ‘cons’ cells and strings.
Storage used for objects in the heap that become unreferenced is eventually reclaimed
by garbage collection.

e A constant space that is used for allocated objects, like the heap. Unlike the heap,
storage used for objects in constant space is not reclaimed by garbage collection. Con-
stant space is used for objects that are essentially permanent, like procedures in the
runtime system.

e Some extra storage that is used by the microcode (the part of the system that is
implemented in C).

All kinds of memory except the last may be controlled either by command-line options or
by environment variables.

MIT Scheme uses a two-space copying garbage collector for reclaiming storage in the
heap. There are two versions of Scheme which handle garbage collection differently. The
standard Scheme, called ‘scheme’ under unix and ‘scheme.exe’ on the PC, has two heaps,
one for each “space”. An alternative, called ‘bchscheme’ under unix and ‘bchschem.exe’
on the PC, has one heap and uses a disk file for the other “space”, thus trading memory
usage against garbage collection speed (see Section 1.4 [Optional Configuration|, page 6).

The total storage required by ‘scheme’ is:

Chapter 2: Running Scheme 11

stack + (constant + 2xheap) + extra
where stack, constant and heap are parameters that are selected when ‘scheme’ starts. For
‘bchscheme’, which has only one heap in memory, the equation is

stack + (constant + heap) + extra

Once the storage is allocated for the constant space and the heap, Scheme will dynami-
cally adjust the proportion of the total that is used for constant space; the stack and extra
microcode storage is not included in this adjustment. Previous versions of MIT Scheme
needed to be told the amount of constant space that was required when loading bands with
the -band option. Dynamic adjustment of the heap and constant space avoids this problem.

If the size of the constant space is not specified, it is automatically set to the correct size
for the band being loaded. Thus, in general it is rarely necessary to explicitly set the size
of the constant space. Additionally, each band requires a small amount of heap space; this
amount is added to any specified heap size, so that the specified heap size is the amount of
free space available.

The Scheme expression ‘(print-gc-statistics)’ shows how much heap and constant
space is available (see Section 3.4 [Garbage Collection], page 29).

2.4 Command-Line Options

Scheme accepts the command-line options detailed in the following sections. The options
may appear in any order, with the restriction that the microcode options must appear before
the runtime options, and the runtime options must appear before any other arguments on
the command line. Any arguments other than these options will generate a warning message
when Scheme starts. If you want to define your own command-line options, see Section 2.5
[Custom Command-line Options|, page 15.

These are the microcode options:

-compiler
This option specifies defaults appropriate for loading the compiler. It specifies
the use of large sizes, exactly like ~large; if the -band option is also specified,
that is the only effect of this option. Otherwise, the default band’s filename is
the value of the environment variable MITSCHEME_COMPILER_BAND, if defined,
or ‘compiler.com’; the library directories are searched to locate this file.

-edwin This option specifies defaults appropriate for loading the editor. It specifies
the use of large sizes, exactly like ~large; if the ~band option is also specified,
that is the only effect of this option. Otherwise, the default band’s filename
is the value of the environment variable MITSCHEME_EDWIN_BAND, if defined, or
‘edwin.com’; the library directories are searched to locate this file.

-compiler -edwin
If both the —compiler and -edwin options are given, Scheme will load an en-
vironment containing both the compiler and the editor. The default band’s
filename is the value of the environment variable MITSCHEME _ALL_BAND, if de-
fined, or ‘all.com’; the library directories are searched to locate this file.

-band filename
Specifies the initial world image file (band) to be loaded. Searches for filename
in the working directory and the library directories, using the full pathname of

12

-large

MIT Scheme User’s Manual

the first readable file of that name. If filename is an absolute pathname (on
unix, this means it starts with ‘/’), then no search occurs — filename is tested
for readability and then used directly. If this option isn’t given, the filename is
the value of the environment variable MITSCHEME_BAND, or if that isn’t defined,
‘runtime.com’; in these cases the library directories are searched, but not the
working directory.

Specifies that large heap, constant, and stack sizes should be used. These are
specified by the environment variables

MITSCHEME_LARGE_HEAP

MITSCHEME_LARGE_CONSTANT

MITSCHEME_LARGE_STACK
If this option isn’t given, the small sizes are used, specified by the environment
variables

MITSCHEME_SMALL_HEAP

MITSCHEME_SMALL_CONSTANT

MITSCHEME_SMALL_STACK
There are reasonable built-in defaults for all of these environment variables,
should any of them be undefined. Note that any or all of the defaults can be
individually overridden by the -heap, -constant, and -stack options.

Note: the Scheme expression ‘(print-gc-statistics)’ shows how much heap
and constant space is available and in use (see Section 3.4 [Garbage Collection],
page 29).

~heap blocks

Specifies the size of the heap in 1024-word blocks. Overrides any default. Nor-
mally two such heaps are allocated; ‘bchscheme’ allocates only one, and uses a
disk file for the other.

The size specified by this option is incremented by the amount of heap space
needed by the band being loaded. Consequently, -heap specifies how much
free space will be available in the heap when Scheme starts, independent of the
amount of heap already consumed by the band.

-constant blocks

Specifies the size of constant space in 1024-word blocks. Overrides any default.
Constant space holds the compiled code for the runtime system and other sub-
systems.

-stack blocks

Specifies the size of the stack in 1024-word blocks. Overrides any default. This
is Scheme’s stack, not the unix stack used by C programs.

-option-summary

—emacs

Causes Scheme to write an option summary to standard error. This shows the
values of all of the settable microcode option variables.

Specifies that Scheme is running as a subprocess of GNU Emacs. This option
is automatically supplied by GNU Emacs, and should not be given under other
circumstances.

Chapter 2: Running Scheme 13

—interactive

—nocore

If this option isn’t specified, and Scheme’s standard 1/0 is not a terminal,
Scheme will detach itself from its controlling terminal, which prevents it from
getting signals sent to the process group of that terminal. If this option is
specified, Scheme will not detach itself from the controlling terminal.
This detaching behavior is useful for running Scheme as a background job.
For example, using bash, the following will run Scheme as a background job,
redirecting its input and output to files, and preventing it from being killed by
keyboard interrupts or by logging out:

scheme < /usr/cph/foo.in > /usr/cph/foo.out 2>&1 &
This option is ignored under non-unix operating systems.
Specifies that Scheme should not generate a core dump under any circum-

stances. If this option is not given, and Scheme terminates abnormally, you
will be prompted to decide whether a core dump should be generated.

This option is ignored under non-unix operating systems.

-library path

Sets the library search path to path. This is a list of directories that is searched
to find various library files, such as bands. If this option is not given, the
value of the environment variable MITSCHEME_LIBRARY_PATH is used; if that
isn’t defined, the default is used.

On unix, the elements of the list are separated by colons, and the default value is
‘/usr/local/lib/mit-scheme’. On PCs, the elements of the list are separated
by semicolons, and the default value is ‘c:\scheme\1lib’.

-utabmd filename

Specifies that filename contains the microcode tables (the microcode tables are
information that informs the runtime system about the microcode’s structure).
Filename is searched for in the working directory and the library directories.
If this option isn’t given, the filename is the value of the environment variable
MITSCHEME_UTABMD_FILE, or if that isn’t defined, ‘utabmd.bin’; in these cases
the library directories are searched, but not the working directory.

-utab is an alternate name for the —utabmd option; at most one of these options
may be given.

-fasl filename

Specifies that a cold load should be performed, using filename as the initial file
to be loaded. If this option isn’t given, a normal load is performed instead.
This option may not be used together with the -compiler, —edwin, or -band
options. This option is useful only for maintenance and development of the
MIT Scheme runtime system.

In addition to the above, ‘bchscheme’ recognizes the following command-line options, all
of which specify parameters affecting how ‘bchscheme’ uses disk storage to do garbage

collection:

-gc-directory directory

Specifies that directory should be used to create files for garbage collection.
If the option is not given, the value of environment variable MITSCHEME_GC_

14 MIT Scheme User’s Manual

DIRECTORY is used instead, and if that is not defined, a standard temporary
directory is used (see TMPDIR in see Section 2.6.3 [Runtime Environment Vari-
ables|, page 18).

-gc-file filename
Specifies that filename should be used for garbage collection. If the option is
not given, the value of environment variable MITSCHEME_GC_FILE is used, and
if this is not defined, a unique filename is generated in the directory specified
with -gc-directory.
-gcfile is an alias for —gc-file; at most one of these options should be spec-
ified.

-gc-keep Specifies that the G file used for garbage collection should not be deleted when
Scheme terminates. The Gc file is deleted only if the file was created by this
invocation of Scheme, and this option is not set.

-gc-start-position number
Specifies the first byte position in the Gc file at which the Scheme process
can write. If not given, the value of the environment variable MITSCHEME_GC_
START_POSITION is used, and if that is not defined, ‘0’ is used, meaning the
beginning of the file. The area of the file used (and locked if possible) is the
region between -gc-start-position and -gc-end-position.

-gc-end-position number
Specifies the last byte position in the GC file at which the Scheme process can
write. If not given, the value of the environment variable MITSCHEME_GC_END_
POSITION is used, and if that is not defined, the sum of the start position (as
specified by -gc-start-position) and the heap size is used. The area of the
file used (and locked if possible) is the region between -gc-start-position
and -gc-end-position.

-gc-window-size blocks
Specifies the size of the windows into new space during garbage collection.
If this option is not given, the value of environment variable MITSCHEME_GC_
WINDOW_SIZE is used instead, and if that is not defined, the value ‘16’ is used.

The following command-line options are only used by an experimental version of
‘bchscheme’ that uses unix System V-style shared memory, and then only if the ‘gcdrone’
program is installed in the library directory.

-gc-drone program
Specifies that program should be used as the drone program for overlapped
1/0 during garbage collection. If the option is not given, the value of environ-
ment variable MITSCHEME _GC_DRONE is used instead, and if that is not defined,
‘gcdrone’ is used.

-gc-read-overlap n
Specifies that Scheme should delegate at most n simultaneous disk read op-
erations during garbage collection. If the option is not given, the value of
environment variable MITSCHEME_GC_READ_QVERLAP is used instead, and if that
is not defined, ‘0’ is used, disabling overlapped reads.

Chapter 2: Running Scheme 15

-gc-write-overlap n
Specifies that Scheme should delegate at most n simultaneous disk write oper-
ations during garbage collection. If the option is not given, the value of envi-
ronment variable MITSCHEME_GC_WRITE_OVERLAP is used instead, and if that is
not defined, ‘0’ is used, disabling overlapped writes.

The following options are runtime options. They are processed after the microcode options
and after the image file is loaded.

-no-init-file
This option causes Scheme to ignore the ‘“/.scheme.init’ or ‘scheme.ini’
file, normally loaded automatically when Scheme starts (if it exists).

-suspend-file
Under some circumstances Scheme can write out a file called ‘scheme_suspend’
in the user’s home directory.! This file is a world image containing the complete
state of the Scheme process; restoring this file continues the computation that
Scheme was performing at the time the file was written.

Normally this file is never written, but the ~suspend-file option enables writ-
ing of this file.

-eval expression . ..
This option causes Scheme to evaluate the expressions following it on the com-
mand line, up to (but not including) the next option that starts with a hyphen.
The expressions are evaluated in the user-initial-environment. Unless ex-
plicitly handled, errors during evaluation are silently ignored.

-load file ...
This option causes Scheme to load the files (or lists of files) following it on
the command line, up to (but not including) the next option that starts with
a hyphen. The files are loaded in the user-initial-environment. Unless
explicitly handled, errors during loading are silently ignored.

The following option is supported only when Edwin is loaded.

-edit This option causes Edwin to start immediately when Scheme is started.

2.5 Custom Command-line Options

MIT Scheme provides a mechanism for you to define your own command-line options.
This is done by registering handlers to identify particular named options and to process them
when Scheme starts. Unfortunately, because of the way this mechanism is implemented,
you must define the options and then save a world image containing your definitions (see
Section 3.3 [World Images]|, page 28). Later, when you start Scheme using that world image,
your options will be recognized.

The following procedures define command-line parsers. In each, the argument keyword
defines the option that will be recognized on the command line. The keyword must be a
string starting with a hyphen and containing at least one additional character.

! Under unix, this file is written when Scheme is terminated by the ‘SIGUSR1’, ‘SIGHUP’, or ‘SIGPWR’ signals.
Under other operating systems, this file is never written.

16 MIT Scheme User’s Manual

simple-command-line-parser keyword thunk procedure+
Defines keyword to be a simple command-line option. When this keyword is seen on
the command line, it causes thunk to be executed.

argument-command-line-parser keyword multiple? procedure procedure+
Defines keyword to be a command-line option that is followed by one or more
command-line arguments. Procedure is a procedure that accepts one argument;
when keyword is seen, it is called once for each argument.

Multiple?, if true, says that keyword may be followed by more than one argument
on the command line. In this case, procedure is called once for each argument that
follows keyword and does not start with a hyphen. If multiple? is #£f, procedure is
called once, with the command-line argument following keyword. In this case, it does
not matter if the following argument starts with a hyphen.

set-command-line-parser! keyword procedure procedure+
This low-level procedure defines keyword to be a command-line option that is defined
by procedure. When keyword is seen, procedure is called with all of the command-line
arguments, starting with keyword, as a single list argument. Procedure must return
two values (using the values procedure): the unused command-line arguments (as a
list), and a thunk that is executed to implement the behavior of the option.

2.6 Environment Variables

Scheme refers to many environment variables. This section lists these variables and
describes how each is used. The environment variables are organized according to the parts
of MIT Scheme that they affect.

Environment variables that affect the microcode must be defined before you start
Scheme; under unix or Windows, others can be defined or overwritten within Scheme by
using the set-environment-variable! procedure, e.g.

(set—environment-variable! "EDWIN_FOREGROUND" "32")

2.6.1 Environment Variables for the Microcode

These environment variables are referred to by the microcode (the executable C programs
called ‘scheme’ and ‘bchscheme’ under unix, and ‘scheme.exe’ and ‘bchschem.exe’ on the

PC).

MITSCHEME_ALL_BAND (default: ‘all.com’ on the library path)
The initial band to be loaded if both the —compiler and -edwin options are
given. Overridden by -band.

MITSCHEME_BAND (default: ‘runtime.com’ on the library path)
The initial band to be loaded. Overridden by -band, —compiler, or —edwin.

MITSCHEME_COMPILER_BAND (default: ‘compiler.com’ on the library path)
The initial band to be loaded if the ~compiler option is given. Overridden by
-band.

Chapter 2: Running Scheme 17

MITSCHEME_EDWIN_BAND (default: ‘edwin.com’ on the library path)
The initial band to be loaded if the -edwin option is given. Overridden by
-band.

MITSCHEME_LARGE_CONSTANT (default: as needed)
The size of constant space, in 1024-word blocks, if the -large, -compiler,
or —edwin options are given. Overridden by -constant. Note: the default is
computed to be the correct size for the band being loaded.

MITSCHEME_LARGE_HEAP (default: ‘1000’
The size of the heap, in 1024-word blocks, if the -large, —~compiler, or ~edwin
options are given. Overridden by -heap.

MITSCHEME_LARGE_STACK (default: ‘100”)
The size of the stack, in 1024-word blocks, if the -large, ~compiler, or ~edwin
options are given. Overridden by -stack.

MITSCHEME_LIBRARY_PATH
A list of directories. These directories are searched, left to right, to find bands
and various other files. On unix systems the list is colon-separated, with the
default ‘/usr/local/lib/mit-scheme’. On PC systems the list is semicolon-
separated with the default ‘c:\scheme\1lib’.

MITSCHEME_SMALL_CONSTANT (default: as needed)
The size of constant space, in 1024-word blocks, if the size options are not given.
Overridden by -constant, -large, -compiler, or —edwin. Note: the default
is computed to be the correct size for the band being loaded.

MITSCHEME_SMALL_HEAP (default: L2507)
The size of the heap, in 1024-word blocks, if the size options are not given.
Overridden by -heap, -large, —compiler, or —edwin.

MITSCHEME_SMALL_STACK (default: thO’)
The size of the stack, in 1024-word blocks, if the size options are not given.
Overridden by -stack, -large, ~compiler, or —edwin.

MITSCHEME_UTABMD_FILE (default: ‘utabmd.bin’ in the library path)
The file containing the microcode tables. Overridden by -utabmd and -utab.

2.6.2 Environment Variables for ‘bchscheme’

These environment variables are referred to by ‘bchscheme’ (not by ‘scheme’).

MITSCHEME_GC_DIRECTORY
The directory in which Gc files are written. Overridden by -gc-directory.
The default for this variable is the standard temporary directory (see TMPDIR
in see Section 2.6.3 [Runtime Environment Variables], page 18).

MITSCHEME_GC_FILE (default: ‘GCXXXXXX’)
The name of the file to use for garbage collection. If it ends in 6 Xs, the Xs
are replaced by a letter and process id of the scheme process, thus generating
a unique name. Overridden by -gc-file.

18 MIT Scheme User’s Manual

MITSCHEME_GC_START_POSITION @kﬁauh:‘oj
The first position in the Gc file to use. Overridden by -gc-start-position.

MITSCHEME_GC_END_POSITION (default: start-position+heap-size)
The last position in the Gc file to use. Overridden by -gc-end-position.

MITSCHEME_GC_WINDOW_SIZE (default: ‘16")
The size in blocks of windows into new space (in the GC file).
Overridden by -gc-window-size.

The following environment variables are only used by an experimental version of Bchscheme
that uses unix System V-style shared memory, and then only if the ‘gcdrone’ program is
installed:

MITSCHEME_GC_DRONE (default: ‘gcdrone’)
The program to use as the 1/0 drone during garbage collection.
Overridden by -gc-drone.

MITSCHEME_GC_READ_OVERLAP (default: ‘0’)
The maximum number of simultaneous read operations.
Overridden by -gc-read-overlap.

MITSCHEME_GC_WRITE_OVERLAP @kﬁauh:‘Oﬁ
The maximum number of simultaneous write operations.
Overridden by -gc-write-overlap.

2.6.3 Environment Variables for the Runtime System

These environment variables are referred to by the runtime system.

HOME Directory in which to look for init files. E.g. ‘c:\users\joe’ or ‘/home/joe’.
This variable needs to be set on OS/2 and Windows 9x. Under Windows
NT/2000/XP, the environment variables HOMEDRIVE and HOMEPATH, set by the
operating system, are used instead. Under unix, HOME is set by the login shell.

TMPDIR

TEMP

TMP Directory for various temporary files. The variables are tried in the given order.
If none of them is suitable, built-in defaults are used: under unix, ‘/var/tmp’,
‘/usr/tmp’, ‘/tmp’; under OS/2 and Windows, ‘\temp’, ‘\tmp’, and ‘\’ (all on
the system drive).

MITSCHEME_INF_DIRECTORY (default: ‘SRC’ on the library path)
Directory containing the debugging information files for the Scheme system.
Should contain subdirectories corresponding to the subdirectories in the source
tree. For example, if its value is ‘f:\random’, runtime system debugging files
will be expected in ‘f:\random\runtime’, while Edwin debugging files will be
expected in ‘f:\random\edwin’.

MITSCHEME_LOAD_OPTIONS (default: ‘optiondb.scm’ on the library path)
Specifies the location of the options database file used by the load-option
procedure.

Chapter 2: Running Scheme 19

2.6.4 Environment Variables for Edwin

These environment variables are referred to by Edwin.

EDWIN_BINARY_DIRECTORY (default: ‘edwin/autoload’ on the library path)
Directory where Edwin expects to find files providing autoloaded facilities.

EDWIN_INFO_DIRECTORY (default: ‘edwin/info’ on the library path)
Directory where Edwin expects to find files for the ‘info’ documentation sub-
system.

EDWIN_ETC_DIRECTORY (default: ‘edwin/etc’ on the library path)
Directory where Edwin expects to find utility programs and documentation
strings.

ESHELL Filename of the shell program to use in shell buffers. If not defined, the SHELL
environment variable is used instead.

SHELL (default: ‘/bin/sh’ (unix), ‘cmd.exe’ (PC))
Filename of the shell program to use in shell buffers and when executing shell
commands. Used to initialize the shell-path-name editor variable.

PATH Used to initialize the exec-path editor variable, which is subsequently used for
finding programs to be run as subprocesses.

DISPLAY Used when Edwin runs under unix and uses X11. Specifies the display on which
Edwin will create windows.

TERM Used when Edwin runs under unix on a terminal. Terminal type.

LINES (default: auto-sense)
Used when Edwin runs under unix on a terminal. Number of text lines on the
screen, for systems that don’t support ‘TIOCGWINSZ’.

COLUMNS (default: auto-sense)
Used when Edwin runs under unix on a terminal. Number of text columns on
the screen, for systems that don’t support ‘TIOCGWINSZ’.

2.6.5 Environment Variables for Microsoft Windows

These environment variables are specific to the Microsoft Windows implementation.

MITSCHEME_FONT (default: determined by operating system)
A string specifying a font name and characteristics, for example ‘Courier New
16 bold’. Allowed characteristics are integer, specifying the font size in points,
and the following style modifiers: ‘bold’, ‘italic’, ‘regular’, ‘underline’ and
‘strikeout’. You should specify only fixed-width fonts as variable-width fonts
are not drawn correctly.

Once in Edwin, the font can be changed with the set-font and set-default-
font commands.

MITSCHEME_GEOMETRY (default: ‘-1,-1,-1, —1’)
Four integers separated by commas or spaces that specify the placement and size
of the MIT Scheme window as a left,top,width,height quadruple. The units are

20

MITSCHEME_

MITSCHEME_

HOMEDRIVE
HOMEPATH

USERNAME
USER

USERDIR

MIT Scheme User’s Manual

screen pixels, and ‘-1” means allow the system to choose this parameter. E.g.
‘-1,-1,500,300’ places a 500 by 300 pixel window at some system-determined
position on the screen. The width and height include the window border and
title.

FOREGROUND (default: according to desktop color scheme)
A value specifying the window text color. The color is specified as hex blue,
green and red values (not RGB): e.g. 0x££0000 for blue.

BACKGROUND (default: according to desktop color scheme)
A value specifying the window background color. See MITSCHEME _FOREGROUND.

These variables are used together to indicate the user’s home directory. This is
the preferred way to specify the home directory.

Specifies the login name of the user running Scheme. This is used for several
different purposes. USERNAME is preferred; USER is used if USERNAME is not
defined. If neither of these variables is defined, an error is signalled when the
username is required.

Specifies a directory that contains the home directories of users. One of the
places in which Scheme looks for the user’s home directory, by searching for a
subdirectory with the user’s login name.

2.6.6 Environment Variables for OS/2

These environment variables are specific to the OS/2 implementation.

USER

USERDIR

COMSPEC

Specifies the login name of the user running Scheme. This is used for several
different purposes. If this variable is undefined, an error is signalled when the
username is required.

Specifies a directory that contains the home directories of users. One of the
places in which Scheme looks for the user’s home directory, by searching for a
subdirectory with the user’s login name. This variable is used only when HOME
is not defined; we recommend using HOME rather than USERDIR.

Specifies the command shell. This is set in all versions of OS/2 (and is required
for proper operation of the operating system). Scheme uses this to determine
the user’s shell if the environment variable SHELL is not defined.

2.7 Starting Scheme from Microsoft Windows

The Microsoft Windows version of MIT Scheme runs as a graphics-based application.
Scheme is normally started using shortcuts; the installer automatically generates several
different predefined shortcuts for your convenience.

The rest of this section gives some tips on how to set up shortcuts that run Scheme. If
you are unfamiliar with this concept you should read about it in the system help.

Chapter 2: Running Scheme 21

e Under Windows NT, Windows 2000, or Windows XP, shortcuts can be common or per-
sonal. When setting common shortcuts it is important to make the shortcut properties
independent of the vagaries of the environment of the user who is running them.

e Give the shortcut an accurate Description.

e Include absolute pathnames to ‘scheme.exe’ and ‘bchscheme.exe’ in the shortcut
Command line.

e If you specify the ~1library command-line option then you do not have to worry about
the MITSCHEME_LIBRARY_PATH environment variable.

e Set the shortcut’s Working Directory to something sensible. On Windows N'T/2000/XP
you can use ‘%HOMEDRIVEY,Z,HOMEPATHY,” to make Scheme start up in the user’s home di-
rectory. On Windows 9x/ME you can use ‘%HOMEY’ to achieve the same effect, provided
that you have set the HOME environment variable as we recommend.

e There are several icons available in the Scheme executable — choose one that best
represents the options given on the command line.

e Specifying a band that contains Edwin is not sufficient to invoke the editor. You also
have to put -edit at the end of the command line.

2.8 Leaving Scheme

There are several ways that you can leave Scheme: there are two Scheme procedures
that you can call; there are several Edwin commands that you can execute; and there are
are graphical-interface buttons (and their associated keyboard accelerators) that you can
activate.

e Two Scheme procedures that you can call. The first is to evaluate
(exit)

which will halt the Scheme system, after first requesting confirmation. Any information
that was in the environment is lost, so this should not be done lightly.

The second procedure suspends Scheme; when this is done you may later restart where
you left off. Unfortunately this is not possible in all operating systems; currently it
works under unix versions that support job control (i.e. all of the unix versions for
which we distribute Scheme). To suspend Scheme, evaluate
(quit)

If your system supports suspension, this will cause Scheme to stop, and you will be
returned to the shell. Scheme remains stopped, and can be continued using the job-
control commands of your shell. If your system doesn’t support suspension, this pro-
cedure does nothing. (Calling the quit procedure is analogous to typing C-z, but it
allows Scheme to respond by typing a prompt when it is unsuspended.)

o Several Edwin commands that you can execute, including save-buffers-kill-scheme,
normally bound to C-x C-c, and suspend-scheme, normally bound to C-x C-z. These
two commands correspond to the procedures exit and quit, respectively.

e Graphical-interface buttons that you can activate. Under OS/2 and Windows, closing
the console window (Scheme’s main window) causes Scheme to be terminated. Under
any operating system, closing an Edwin window causes that window to go away, and
if it is the only Edwin window, it terminates Scheme as well.

22

MIT Scheme User’s Manual

Under OS/2, there are two distinct ways to close the console window. The first is to
use any of the usual window-closing methods, such as the ‘Close’ system-menu item
or double-clicking on the system-menu icon. When this is done, you will be presented
with a dialog that gives you the option to close the window with or without termating
Scheme. The second way is to select the ‘Exit’ item from the ‘File’ menu, which
terminates Scheme immediately with no dialog.

Chapter 3: Using Scheme 23

3 Using Scheme

This chapter describes how to use Scheme to evaluate expressions and load programs. It
also describes how to save custom “world images”, and how to control the garbage collector.
Subsequent chapters will describe how to use the compiler, and how to debug your programs.

3.1 The Read-Eval-Print Loop

When you first start up Scheme from the command line, you will be typing at a program
called the Read-Eval-Print Loop (abbreviated REPL). It displays a prompt at the left hand
side of the screen whenever it is waiting for input. You then type an expression (terminating
it with RET)). Scheme evaluates the expression, prints the result, and gives you another
prompt.

3.1.1 The Prompt and Level Number

The REPL prompt normally has the form
1]1=>
The ‘1’ in the prompt is a level number, which is always a positive integer. This number is

incremented under certain circumstances, the most common being an error. For example,
here is what you will see if you type f o o after starting Scheme:

;Unbound variable: foo

;To continue, call RESTART with an option number:

; (RESTART 3) => Specify a value to use instead of foo.
; (RESTART 2) => Define foo to a given value.

; (RESTART 1) => Return to read-eval-print level 1.

2 error>

In this case, the level number has been incremented to ‘2’, which indicates that a new REPL
has been started (also the prompt string has been changed to remind you that the REPL
was started because of an error). The ‘2’ means that this new REPL is “over” the old one.
The original REPL still exists, and is waiting for you to return to it, for example, by entering
(restart 1). Furthermore, if an error occurs while you are in this REPL, yet another REPL
will be started, and the level number will be increased to ‘3’. This can continue ad infinitum,
but normally it is rare to use more than a few levels.

The normal way to get out of an error REPL and back to the top level REPL is to use the
C-g interrupt. This is a single-keystroke command executed by holding down the
key and pressing the (G key. C-g always terminates whatever is running and returns you
to the top level REPL immediately.

Note: The appearance of the ‘error>’ prompt does not mean that Scheme is in some
weird inconsistent state that you should avoid. It is merely a reminder that your program
was in error: an illegal operation was attempted, but it was detected and avoided. Often
the best way to find out what is in error is to do some poking around in the error REPL. If
you abort out of it, the context of the error will be destroyed, and you may not be able to
find out what happened.

24 MIT Scheme User’s Manual

3.1.2 Interrupting

Scheme has several interrupt keys, which vary depending on the underlying operating
system: under unix, C-g and C-c; under OS/2 and Windows, C-g, C-b, C-x and C-u. The
C-g key stops any Scheme evaluation that is running and returns you to the top level REPL.
C-c prompts you for another character and performs some action based on that character.
It is not necessary to type after C-g or C-c, nor is it needed after the character that
C-c will ask you for.

Here are the definitions of the more common interrupt keys; on unix, type C-c ? for
more possibilities. Note that in any given implementation, only a subset of the following
keys is available.

C-c C-c
C-g Abort whatever Scheme evaluation is currently running and return to the top-
level REPL. If no evaluation is running, this is equivalent to evaluating
(cmdl-interrupt/abort-top-level)
C-c C-x
C-x Abort whatever Scheme evaluation is currently running and return to the “cur-
rent” REPL. If no evaluation is running, this is equivalent to evaluating
(cmdl-interrupt/abort-nearest)
C-c C-u
C-u Abort whatever Scheme evaluation is running and go up one level. If you are
already at level number 1, the evaluation is aborted, leaving you at level 1. If
no evaluation is running, this is equivalent to evaluating
(cmdl-interrupt/abort-previous)
C-c C-b
C-b Suspend whatever Scheme evaluation is running and start a breakpoint REPL.
The evaluation can be resumed by evaluating
(continue)
in that REPL at any time.
C-c q Similar to typing (exit) at the REPL, except that it works even if Scheme is
running an evaluation, and does not request confirmation.
C-cz Similar to typing (quit) at the REPL, except that it works even if Scheme is
running an evaluation.
C-ci Ignore the interrupt. Type this if you made a mistake and didn’t really mean
to type C-c.
C-c? Print help information. This will describe any other options not documented
here.

3.1.3 Restarting

Another way to exit a REPL is to use the restart procedure:

Chapter 3: Using Scheme 25

restart [k procedure+

This procedure selects and invokes a restart method. The list of restart methods is
different for each REPL and for each error; in the case of an error REPL, this list is
printed when the REPL is started:

;Unbound variable: foo

;To continue, call RESTART with an option number:

; (RESTART 3) => Specify a value to use instead of foo.

; (RESTART 2) => Define foo to a given value.

; (RESTART 1) => Return to read-eval-print level 1.

2 error>

If the k argument is given, it must be a positive integer index into the list (in the
example it must be between one and three inclusive). The integer k selects an item
from the list and invokes it. If k is not given, restart prints the list and prompts for
the integer index:

2 error> (restart)

;Choose an option by number:

; 3: Specify a value to use instead of foo.

; 2: Define foo to a given value.

; 1: Return to read-eval-print level 1.

Option number:
The simplest restart methods just perform their actions. For example:

2 error> (restart 1)
;Abort!

11=>
Other methods will prompt for more input before continuing:
2 error> (restart)
;Choose an option by number:
; 3: Specify a value to use instead of foo.
; 2: Define foo to a given value.
; 1: Return to read-eval-print level 1.

Option number: 3

Value to use instead of foo: ’(a b)
;Value: (a b)

1]=>
3.1.4 The Current REPL Environment

Every REPL has a current environment, which is the place where expressions are evaluated
and definitions are stored. When Scheme is started, this environment is the value of the
variable user-initial-environment. There are a number of other environments in the
system, for example system-global-environment, where the runtime system’s bindings
are stored.

26 MIT Scheme User’s Manual

You can get the current REPL environment by evaluating
(nearest-repl/environment)

There are several other ways to obtain environments. For example, if you have a proce-
dure object, you can get a pointer to the environment in which it was closed by evaluating

(procedure-environment procedure)

Here is the procedure that changes the REPL’s environment:

ge environment procedure+
Changes the current REPL environment to be environment (ge stands for “Goto En-
vironment”). Environment is allowed to be a procedure as well as an environment
object. If it is a procedure, then the closing environment of that procedure is used in
its place.

pe procedure+
This procedure is useful for finding out which environment you are in (pe stands for
“Print Environment”). If the current REPL environment belongs to a package, then
pe returns the package name (a list of symbols). If the current REPL environment
does not belong to a package then the environment is returned.

3.2 Loading Files

To load files of Scheme code, use the procedure load:

load filename [environment [syntax-table [purify?]]] procedure
Filename may be a string naming a file, or a list of strings naming multiple files.
Environment, if given, is the environment to evaluate the file in; if not given the
current REPL environment is used.

Syntax-table is no longer used and if supplied will be ignored.

The optional argument purify? is a boolean that says whether to move the contents
of the file into constant space after it is loaded but before it is evaluated. This is
performed by calling the procedure purify (see Section 3.4 [Garbage Collection],
page 29). If purify? is given and true, this is done; otherwise it is not.

load determines whether the file to be loaded is binary or source code, and performs
the appropriate action. By convention, files of source code have a pathname type
of "scm", and files of binary SCode have pathname type "bin". Native-code bina-
ries have pathname type "com". (See the description of pathname-type in section
“Components of Pathnames” in MIT Scheme Reference Manual.)

load-noisily? variable+
If load-noisily? is set to #t, load will print the value of each expression in the
file as it is evaluated. Otherwise, nothing is printed except for the value of the last
expression in the file. (Note: the noisy loading feature is implemented for source-code
files only.)

Chapter 3: Using Scheme 27

load /default-types variable+
When load is given a pathname without a type, it uses the value of this variable to
determine what pathname types to look for and how to load the file. 1load/default-
types is a list of associations that maps pathname types (strings) to loader proce-
dures. load tries the pathname types in the order that they appear in the list. The
initial value of this variable has pathname types in this order:

"COm" "SO" Ilslll llbinll "SCIIl"

This means that, for example, (load "foo") will try to load ‘foo.com’ first, and
‘foo.scm’ only after looking for and failing to find the other pathname types.

All pathnames are interpreted relative to a working directory, which is initialized when
Scheme is started. The working directory can be obtained by calling the procedure pwd
or modified by calling the procedure cd; see section “Working Directory” in MIT Scheme
Reference Manual. Files may be loaded when Scheme first starts; see the ~load command-
line option for details.

load-option symbol [no-error?] procedure+
Loads the option specified by symbol; if already loaded, does nothing. Returns sym-
bol; if there is no such option, an error is signalled. However, if no-error? is specified
and true, no error is signalled in this case, and #£ is returned.

A number of built-in options are defined:
compress Support to compress and uncompress files. Undocumented; see the source

file ‘runtime/cpress.scm’. Used by the runtime system for compression
of compiled-code debugging information.

format The format procedure. See section “Format” in MI'T' Scheme Reference
Manual.
gdbm Support to access gdbm databases. Undocumented; see the source files

‘runtime/gdbm.scm’ and ‘microcode/prgdbm.c’.

hash-table
The hash-table data type. See section “Hash Tables” in MIT Scheme
Reference Manual.

ordered-vector
Support to search and do completion on vectors of ordered elements.
Undocumented; see the source file ‘runtime/ordvec.scm’.

rb-tree The red-black tree data type. See section “Red-Black Trees” in MIT
Scheme Reference Manual.

regular-expression
Support to search and match strings for regular expressions. See section
“Regular Expressions” in MI'T Scheme Reference Manual.

stepper Support to step through the evaluation of Scheme expressions. Undoc-
umented; see the source file ‘runtime/ystep.scm’. Used by the Edwin
command step-expression.

28 MIT Scheme User’s Manual

subprocess
Support to run other programs as subprocesses of the Scheme process.
Undocumented; see the source file ‘runtime/process.scm’. Used exten-
sively by Edwin.

synchronous-subprocess
Support to run synchronous subprocesses. See section “Subprocesses” in
MIT Scheme Reference Manual.

wt-tree The weight-balanced tree data type. See section “Weight-Balanced Trees”
in MI'T Scheme Reference Manual.

In addition to the built-in options, you may define other options to be loaded by load-
options by modifying the file ‘optiondb.scm’ on the library path. An example file is
included with the distribution; normally this file consists of a series of calls to the procedure
define-load-option, terminated by the expression

(further-load-options standard-load-options)

define-load-option symbol thunk . .. procedure+
Each thunk must be a procedure of no arguments. Defines the load option named
symbol. When the procedure load-option is called with symbol as an argument, the
thunk arguments are executed in order from left to right.

3.3 World Images

A world image, also called a band, is a file that contains a complete Scheme system,
perhaps additionally including user application code. Scheme provides a method for saving
and restoring world images. The method writes a file containing all of the Scheme code and
data in the running process. The file ‘runtime.com’ that is loaded by the microcode is just
such a band. To make your own band, use the procedure disk-save.

disk-save filename [identify] procedure+
Causes a band to be written to the file specified by filename. The optional argument
identify controls what happens when that band is restored, as follows:

not specified
Start up in the top-level REPL, identifying the world in the normal way.

a string Do the same thing except print that string instead of ‘Scheme’ when
restarting.

the constant #t
Restart exactly where you were when the call to disk-save was per-
formed. This is especially useful for saving your state when an error has
occurred and you are not in the top-level REPL.

the constant #f
Just like #t, except that the runtime system will not perform normal
restart initializations; in particular, it will not load your init file.

Chapter 3: Using Scheme 29

To restore a saved band, give the -band option when starting Scheme. Alternatively,
evaluate (disk-restore filename), which will destroy the current world, replacing it with
the saved world. The argument to disk-restore may be omitted, in which case it defaults
to the filename from which the current world was last restored.

3.4 Garbage Collection

This section describes procedures that control garbage collection. See Section 2.3 [Mem-
ory Usage], page 10, for a discussion of how MIT Scheme uses memory.

gc-flip [safety-margin] procedure+
Forces a garbage collection to occur. Returns the number of words of storage available
after collection, an exact non-negative integer.

Safety-margin determines the number of words of storage available to system tasks
after the need for a garbage collection is detected and before the garbage collector is
started. (An example of such a system task is changing the run-light to show “gc”
when scheme is running under Emacs.) Note well: you should not specify safety-
margin unless you know what you are doing. If you specify a value that is too small,
you can put Scheme in an unusable state.

purify object [pure-space? [queue?]] procedure+
Moves object from the heap into constant space. Has no effect if object is already
stored in constant space. Object is moved in its entirety; if it is a compound object
such as a list, a vector, or a record, then all of the objects that object points to are
also moved to constant space.

There are three important effects associated with moving an object to constant space.
The first and most important effect is that the object takes up half as much space,
because when in the heap, the system must reserve space for the object in both the
active heap and the inactive heap; if the object is in constant space it is not copied
and therefore no extra space is required. The second effect is that garbage collection
will take less time, because object will no longer be copied. The third effect is that the
space allocated to object is permanently allocated, because constant space is never
cleaned; any unreachable objects in constant space remain there until the Scheme
process is terminated.

The optional argument pure-space? is obsolete; it defaults to #t and when explicitly
specified should always be #t.

The optional argument queue?, if #f, specifies that object should be moved to constant
space immediately; otherwise object is queued to be moved during the next garbage
collection. This argument defaults to #t. The reason for queuing these requests is
that moving an object to constant space requires a garbage collection to occur, a
relatively slow process. By queuing the requests, this overhead is avoided, because
moving an object during a garbage collection has no effect on the time of the garbage
collection. Furthermore, if several requests are queued, they can all be processed
together in one garbage collection, while if done separately they would each require
their own garbage collection.

30 MIT Scheme User’s Manual

flush-purification-queue! procedure+
Forces any pending queued purification requests to be processed. This examines the
purify queue, and if it contains any requests, forces a garbage collection to process
them. If the queue is empty, does nothing.

print-gc-statistics procedure+

Prints out information about memory allocation and the garbage collector. The
information is printed to the current output port. Shows how much space is “in use”
and how much is “free”, separately for the heap and constant space. The amounts are
shown in words, and also in 1024-word blocks; the block figures make it convenient
to use these numbers to adjust the arguments given to the -heap and -constant
command-line options. Following the allocation figures, information about the most
recent 8 garbage collections is shown, in the same format as a GC notification.

Note that these numbers are accurate at the time that print-gc-statistics is
called. In the case of the heap, the “in use” figure shows how much memory has
been used since the last garbage collection, and includes all live objects as well as
any uncollected garbage that has accumulated since then. The only accurate way to
determine the size of live storage is to subtract the value of ‘(gc-flip)’ from the
size of the heap. The size of the heap can be determined by adding the “in use” and
“free” figures reported by print-gc-statistics.

(print-gc-statistics)

constant in use: 534121 words = 521 blocks + 617 words
constant free: 128 words = 0 blocks + 128 words
heap in use: 34845 words = 34 blocks + 29 words
heap free: 205530 words = 200 blocks + 730 words
GC #1: took: 0.13 (81%) CPU time, 0.15 (1%) real time; free: 207210
;No value
set-gc-notification! [on7] procedure+

Controls whether the user is notified of garbage collections. If on? is true, notification
is enabled; otherwise notification is disabled. If on? is not given, it defaults to #t.
When Scheme starts, notification is disabled.

The notification appears as a single line like the following, showing how many garbage
collections have occurred, the time taken to perform the garbage collection and the
free storage remaining (in words) after collection.

GC #5: took: 0.50 (8%) CPU time, 0.70 (2%) real time; free: 364346

To operate comfortably, the amount of free storage after garbage collection should be
a substantial proportion of the heap size. If the CPU time percentage is consistently
high (over 20%), you should consider running with a larger heap. A rough rule of
thumb to halve the GC overhead is to take the amount of free storage, divide by 1000,
and add this figure to the current value used for the -heap command-line option.
Unfortunately there is no way to adjust the heap size without restarting Scheme.

toggle-gc-notification! procedure+
Toggles GC notification on and off. If GC notification is turned on, turns it off;
otherwise turns it on.

Chapter 4: Compiling Programs 31

4 Compiling Programs

Note: the procedures described in this section are only available when the -compiler
command-line option is specified.

4.1 Compilation Procedures

cf filename [destination] procedure+
This is the program that transforms a source-code file into native-code binary form.
If destination is not given, as in

(cf "foo")
cf compiles the file ‘foo.scm’, producing the file ‘foo.com’ (incidentally it will also
produce ‘foo.bin’, ‘foo.bci’, and possibly ‘foo.ext’). If you later evaluate

(load "foo")
‘foo.com’ will be loaded rather than ‘foo.scm’.
If destination is given, it says where the output files should go. If this argument is a
directory, they go in that directory, e.g.:

(cf "foo" "../bar/")
will take ‘foo.scm’ and generate the file . ./bar/foo.com’. If destination is not a
directory, it is the root name of the output:

(cf "foo" "bar")

takes ‘foo.scm’ and generates ‘bar.com’.

3

About the ‘.bci’ files: these files contain the debugging information that Scheme uses
when you call debug to examine compiled code. When you load a ‘.com’ file, Scheme
remembers where it was loaded from, and when the debugger (or pp) looks at the compiled
code from that file, it attempts to find the ‘.bci’ file in the same directory from which the
‘.com’ file was loaded. Thus it is a good idea to leave these files together.

‘.bci’ files are stored in a compressed format. The debugger has to uncompress the
files when it looks at them, and on a slow machine this can take a noticeable time. The
system takes steps to reduce the impact of this behavior: debugging information is cached
in memory, and uncompressed versions of ‘.bci’ files are kept around. The default behavior
is that a temporary file is created and the ‘.bci’ file is uncompressed into it. The temporary
file is kept around for a while afterwards, and during that time if the uncompressed ‘.bci’
file is needed the temporary file is used. Fach such reference updates an ‘access time’ that
is associated with the temporary file. The garbage collector checks the access times of all
such temporary files, and deletes any that have not been accessed in five minutes or more.
All of the temporaries are deleted automatically when the Scheme process is killed.

Two other behaviors are available. One of them uncompresses the ‘.bci’ file each time
it is referenced, and the other uncompresses the ‘.bci’ file and writes it back out as a ‘. bif’
file. The ‘.bif’ file remains after Scheme exits. The time interval and the behavior are
controlled by the following variables.

save-uncompressed-files? variable+
This variable affects what happens when ‘.bci’ files are uncompressed. It allows a
trade-off between performance and disk space. There are three possible values:

32 MIT Scheme User’s Manual

#f The uncompressed versions of ‘.bci’ files are never saved. Each time
the information is needed the ‘.bci’ file is uncompressed. This option
requires the minimum amount of disk space and is the slowest.

automatic
Uncompressed versions of ‘.bci’ files are kept as temporary files. The
temporary files are deleted when Scheme exits, or if they have not been
used for a while. This is the default.

#t The ‘.bci’ files are uncompressed to permanent ‘.bif’ files. These files
remain on disk after Scheme exits, and are rather large - about twice the
size of the corresponding ‘.bci’ files. If you choose this option and you
are running out of disk space you may delete the ‘.bif’ files. They will
be regenerated as needed.

uncompressed-file-lifetime variable+

The minimum length of time that a temporary uncompressed version of a ‘.bci’ file
will stay on disk after it is last used. The time is in milliseconds; the default is
‘300000’ (five minutes).

load-debugging-info-on-demand? variable+
If this variable is ‘#f’, then printing a compiled procedure will print the procedure’s
name only if the debugging information for that procedure is already loaded. Other-
wise, it will force loading of the debugging information. The default value is #f.

st filename [destination] procedure+
st is the program that transforms a source-code file into binary SCode form; it is
used on machines that do not support native-code compilation. It performs numerous
optimizations that can make your programs run considerably faster than unoptimized
interpreted code. Also, the binary files that it generates load very quickly compared
to source-code files.

The simplest way to use sf is just to say:
(sf filename)

This will cause your file to be transformed, and the resulting binary file to be written
out with the same name, but with pathname type "bin". If you do not specify a
pathname type on the input file, "scm" is assumed.

Like load, the first argument to sf may be a list of filenames rather than a single
filename.

st takes an optional second argument, which is the filename of the output file. If this
argument is a directory, then the output file has its normal name but is put in that
directory instead.

4.2 Declarations

Several declarations can be added to your programs to help cf and sf make them more
efficient.

Chapter 4: Compiling Programs 33

4.2.1 Standard Names

Normally, all files have a line
(declare (usual-integrations))

near their beginning, which tells the compiler that free variables whose names are defined in
system-global-environment will not be shadowed by other definitions when the program
is loaded. If you redefine some global name in your code, for example car, cdr, and cons,
you should indicate it in the declaration:

(declare (usual-integrations car cdr cons))

You can obtain an alphabetically-sorted list of the names that the usual-integrations
declaration affects by evaluating the following expression:

(eval ’(sort (append usual-integrations/constant-names
usual-integrations/expansion-names)
(lambda (x y)
(string<=? (symbol->string x)
(symbol->string y))))
(->environment ’(scode-optimizer)))

4.2.2 In-line Coding

Another useful facility is the ability to in-line code procedure definitions. In fact, the
compiler will perform full beta conversion, with automatic renaming, if you request it. Here
are the relevant declarations:

integrate name . .. declaration+
The variables names must be defined in the same file as this declaration. Any reference
to one of the named variables that appears in the same block as the declaration, or
one of its descendant blocks, will be replaced by the corresponding binding’s value
expression.

integrate-operator name . .. declaration+
Similar to the integrate declaration, except that it only substitutes for references
that appear in the operator position of a combination. All other references are ignored.

integrate-external filename declaration+
Causes the compiler to use the top-level integrations provided by filename. filename
should not specify a file type, and the source-code file that it names must have been
previously processed by the compiler.

If filename is a relative filename (the normal case), it is interpreted as being
relative to the file in which the declaration appears. Thus if the declaration
appears in file ‘/usr/cph/foo.scm’, then the compiler looks for a file called
‘/usr/cph/filename.ext’.

Note: When the compiler finds top-level integrations, it collects them and out-
puts them into an auxiliary file with extension ‘.ext’. This ‘.ext’ file is what the
integrate-external declaration refers to.

34 MIT Scheme User’s Manual

Note that the most common use of this facility, in-line coding of procedure definitions,
requires a somewhat complicated use of these declarations. Because this is so common, there
is a special form, define-integrable, which is like define but performs the appropriate
declarations. For example:

(define-integrable (foo-bar foo bar)
(vector-ref (vector-ref foo bar) 3))

Here is how you do the same thing without this special form: there should be an
integrate-operator declaration for the procedure’s name, and (internal to the proce-
dure’s definition) an integrate declaration for each of the procedure’s parameters, like
this:

(declare (integrate-operator foo-bar))

(define foo-bar
(lambda (foo bar)
(declare (integrate foo bar))
(vector-ref (vector-ref foo bar) 3)))

The reason for this complication is as follows: the integrate-operator declaration
finds all the references to foo-bar and replaces them with the lambda expression from the
definition. Then, the integrate declarations take effect because the combination in which
the reference to foo-bar occurred supplies code that is substituted throughout the body of
the procedure definition. For example:

(foo-bar (car baz) (cdr baz))
First use the integrate-operator declaration:

((lambda (foo bar)
(declare (integrate foo bar))
(vector-ref (vector-ref foo bar) 3))
(car baz)
(cdr baz))

Next use the internal integrate declaration:

((lambda (foo bar)

(vector-ref (vector-ref (car baz) (cdr baz)) 3))
(car baz)
(cdr baz))

Next notice that the variables foo and bar are not used, and eliminate them:

((lambda ()
(vector-ref (vector-ref (car baz) (cdr baz)) 3)))

Finally, remove the ((lambda () ...)) to produce

(vector-ref (vector-ref (car baz) (cdr baz)) 3)

Useful tip

To see the effect of integration declarations (and of macros) on a source file, pretty-print
the ‘.bin’ file like this (be prepared for a lot of output).

(sf "foo.scm")
(pp (fasload "foo.bin"))

Chapter 4: Compiling Programs 35

4.2.3 Operator Replacement

The replace-operator declaration is provided to inform the compiler that certain op-
erators may be replaced by other operators depending on the number of arguments. For
example:

Declaration:

(declare (replace-operator (map (2 map-2) (3 map-3))))
Replacements:

(map f x y 2z) — (map f x y 2)

(map f x y) — (map-3 f x y)

(map f x) +— (map-2 f x)

(map f) — (map f)

(map) +— (map)
Presumably map-2 and map-3 are efficient versions of map that are written for exactly two
and three arguments respectively. All the other cases are not expanded but are handled by
the original, general map procedure, which is less efficient because it must handle a variable
number of arguments.

replace-operator name ... declaration+
The syntax of this declaration is

(replace-operator
(name

(nargsl valuel)

(nargs2 value2)

coa))
where
e name is a symbol.

e nargsl, nargs2 etc. are non-negative integers, or one of the following symbols:
any, else or otherwise.

e valuel, value2 etc. are simple expressions in one of these forms:
>constant A constant.
variable A variable.

(primitive primitive-name [arity])
The primitive procedure named primitive-name. The optional ele-
ment arity, a non-negative integer, specifies the number of arguments
that the primitive accepts.

(global var)
A global variable.
The meanings of these fields are:

e name is the name of the operator to be reduced. If is is not shadowed (for
example, by a let) then it may be replaced according to the following rules.

e If the operator has nargsN arguments then it is replaced with a call to valueN
with the same arguments.

36 MIT Scheme User’s Manual

e If the number of arguments is not listed, and one of the nargsN is any, else
or otherwise, then the operation is replaced with a call to the corresponding
valueN. Only one of the nargsN may be of this form.

e If the number of arguments is not listed and none of the nargsN is any, else or
otherwise, then the operation is not replaced.

4.2.4 Operator Reduction

The reduce-operator declaration is provided to inform the compiler that certain names
are n-ary versions of binary operators. Here are some examples:

Declaration:
(declare (reduce-operator (cons* cons)))
Replacements:

(cons* x y z w) +— (cons x (cons y (cons z w))),
(cons* x y) + (cons x y)
(cons* x) = x

(cons*) too few arguments
Declaration:

(declare (reduce-operator (list cons (null-value ’() any))))
Replacements:

(list x y z w) = (cons x (cons y (cons z (cons w *()))))

(1ist x y) — (cons x (cons y *()))

(1ist x) = (cons x (D)

(1ist) — 0
Declaration:

(declare (reduce-operator (- %- (null-value O single) (group left))))
Replacements:

xyzw) = (b= O b= xy) 2) w)

xy)— - xy)

(- x) = (5= 0 x)

(-) — 0
Declaration:

(declare (reduce-operator (+ %+ (null-value O none) (group right))))
Replacements:

(+xyzw) = Ut x Uty Gtz w))

+xy) — b+ x y)

(+ x) — x

+) — 0

Note: This declaration does not cause an appropriate definition of %+ (in the last ex-

ample) to appear in your code. It merely informs the compiler that certain optimizations
can be performed on calls to + by replacing them with calls to %+. You should provide a
definition of %+ as well, although it is not required.

Declaration:

Chapter 4: Compiling Programs 37

(declare (reduce-operator (apply (primitive cons)
(group right)
(wrapper (global apply) 1))))
Replacements:
(apply f x y z w)
— ((access apply ()) f (cons x (cons y (cons z w))))
(apply f x y)
— ((access apply () f (cons x y))
(apply f x) +— (apply f x)
(apply f) +— (apply)
(apply) +— (apply)

reduce-operator name ... declaration+
The general format of the declaration is (brackets denote optional elements):

(reduce-operator
(name
binop
[(group ordering)]
[(null-value value null-option)]
[(singleton unop)]
[(wrapper wrap [n])]
[(maximum m)]
)

)
where
e n and m are non-negative integers.
e name is a symbol.

e binop, value, unop, and wrap are simple expressions in one of these forms:
’constant A constant.
variable A variable.

(primitive primitive-name [arity])
The primitive procedure named primitive-name. The optional el-
ement arity specifies the number of arguments that the primitive
accepts.

(global var)
A global variable.
e null-option is either always, any, one, single, none, or empty.
e ordering is either left, right, or associative.
The meaning of these fields is:
e name is the name of the n-ary operation to be reduced.
e binop is the binary operation into which the n-ary operation is to be reduced.
e The group option specifies whether name associates to the right or left.

e The null-value option specifies a value to use in the following cases:

38 MIT Scheme User’s Manual

none

empty When no arguments are supplied to name, value is returned.

one

single When a single argument is provided to name, value becomes the
second argument to binop.

any

always binop is used on the “last” argument, and value provides the remain-

ing argument to binop.

In the above options, when value is supplied to binop, it is supplied on the left
if grouping to the left, otherwise it is supplied on the right.

e The singleton option specifies a function, unop, to be invoked on the single
argument given. This option supersedes the null-value option, which can only
take the value none.

e The wrapper option specifies a function, wrap, to be invoked on the result of the
outermost call to binop after the expansion. If n is provided it must be a non-
negative integer indicating a number of arguments that are transferred verbatim
from the original call to the wrapper. They are passed to the left of the reduction.

e The maximum option specifies that calls with more than m arguments should
not be reduced.

4.3 Efficiency Tips

How you write your programs can have a large impact on how efficiently the compiled
program runs. The most important thing to do, after choosing suitable data structures, is
to put the following declaration near the beginning of the file.

(declare (usual-integrations))

Without this declaration the compiler cannot recognize any of the common operators
and compile them efficiently.

The usual-integrations declaration is usually sufficient to get good quality compiled
code.

If you really need to squeeze more performance out of your code then we hope that you
find the following grab-bag of tips, hints and explanations useful.

4.3.1 Coding style

Scheme is a rich language, in which there are usually several ways to say the same
thing. A coding style is a set of rules that a programmer uses for choosing an expressive
form to use in a given situation. Usually these rules are aesthetic, but sometimes there
are efficiency issues involved; this section describes a few choices that have non-obvious
efficiency consequences.

Better predicates

Consider the following implementation of map as might be found in any introductory
book on Scheme:

Chapter 4: Compiling Programs 39

(define (map f 1st)
(if (null? 1st)
0]
(cons (f (car 1st)) (map f (cdr 1st)))))

The problem with this definition is that at the points where car and cdr are called
we still do not know that Ist is a pair. The compiler must insert a type check, or if type
checks are disabled, the program might give wrong results. Since one of the fundamental
properties of map is that it transforms lists, we should make the relationship between the
input pairs and the result pairs more apparent in the code:

(define (map f 1st)
(cond ((pair? 1lst)
(cons (f (car 1st)) (map f (cdr 1st))))
((null? 1st)
>0))
(else
(error "Not a proper list:" 1st))))

Note also that the pair? case comes first because we expect that map will be called on

lists which have, on average, length greater that one.

Internal procedures

Calls to internal procedures are faster than calls to global procedures. There are two
things that make internal procedures faster: First, the procedure call is compiled to a
direct jump to a known location, which is more efficient that jumping ‘via’ a global binding.
Second, there is a knock-on effect: since the compiler can see the internal procedure, the
compiler can analyze it and possibly produce better code for other expressions in the body
of the loop too:

(define (map f original-1lst)
(let walk ((1st original-1st))
(cond ((pair? 1lst)
(cons (f (car 1st)) (walk (cdr 1st))))
((null? 1st)
*())

(else
(error "Not a proper list:" original-1st)))))

Internal defines

Internal definitions are a useful tool for structuring larger procedures. However, certain
internal definitions can thwart compiler optimizations. Consider the following two proce-
dures, where compute-100 is some unknown procedure that we just know returns ‘100’.

(define (£f1)
(define v 100)
(lambda () v))

(define (£2)
(define v (compute-100))
(lambda) v))

40 MIT Scheme User’s Manual

The procedure returned by f1 will always give the same result and the compiler can
prove this. The procedure returned by £2 may return different results, even if £2 is only
called once. Because of this, the compiler has to allocate a memory cell to v. How can the
procedure return different results?

The fundamental reason is that the continuation may escape during the evaluation of
(compute-100), allowing the rest of the body of £2 to be executed again:

(define keep)

(define (compute-100)
(call-with-current-continuation
(lambda (k)
(set! keep k)
100)))

(define p (£2))

(p) = 100
(keep -999) = p re-define v and p
(p) = -999

To avoid the inefficiency introduced to handle the general case, the compiler must prove
that the continuation cannot possibly escape. The compiler knows that lambda expressions
and constants do not let their continuations escape, so order the internal definitions so that
definitions of the following forms come first:

(define x ’something)
(define x (lambda (...) ...))
(define (f u v) ...)

Note: The IEEE Scheme standard permits only lambda expressions and constants as
the value of internal defines. Furthermore, all internal definitions must appear before any
other expressions in the body. Following the standard simultaneously assures portability
and avoids the implementation inefficiencies described in this section.

4.3.2 Global variables

Compiled code usually accesses variables in top-level first-class environments via variable
caches. Fach compiled procedure has a set of variable caches for the global variables that
it uses. There are three kinds of variable cache - read caches for getting the value of a
variable (referencing the variable), write caches for changing the value, and execute caches
for calling the procedure assigned to that variable.

Sometimes the variable caches contain special objects, called reference traps, that in-
dicate that the operation cannot proceed normally and must either be completed by the
system (in order to keep the caches coherent) or must signal an error. For example, the
assignment

(set! newline my-better-newline)

will cause the system to go to each compiled procedure that calls newline and update its
execute cache to call the new procedure. Obviously you want to avoid updating hundreds
of execute caches in a critical loop. Using fluid-let to temporarily redefine a procedure
has the same inefficiency (but twice!).

Chapter 4: Compiling Programs 41

To behave correctly in all situations, each variable reference or assignment must check
for the reference traps.

Sometimes you can prove that the variable (a) will always be bound, (b) will never be
unassigned, and (c) there will never be any compiled calls to that variable. The compiler
can’t prove this because it assumes that other independently compiled files might be loaded
that invalidate these assumptions. If you know that these conditions hold, the following
declarations can speed up and reduce the size of a program that uses global variables.

ignore-reference-traps variables declaration+

This declaration tells the compiler that it need not check for reference-trap objects
when referring to the given variables. If any of the variables is unbound or unassigned
then a variable reference will yield a reference-trap object rather than signaling an
error. This declaration is relatively safe: the worst that can happen is that a reference-
trap object finds its way into a data structure (e.g. a list) or into interpreted code, in
which case it will probably cause some ‘unrelated’ variable to mysteriously become
unbound or unassigned.

ignore-assignment-traps variables declaration+

This declaration tells the compiler that it need not check for reference-trap objects
when assigning to the given variables. An assignment to a variable that ignores
assignment traps can cause a great deal of trouble. If there is a compiled procedure
call anywhere in the system to this variable, the execute caches will not be updated,
causing an inconsistency between the value used for the procedure call and the value
seen by reading the variable. This mischief is compounded by the fact that the
assignment can cause other assignments that were compiled with checks to behave
this way too.

The variables are specified with expressions from the following set language:

set name ... variable-specification
All of the explicitly listed names.

all variable-specification
none variable-specification
free variable-specification
bound variable-specification
assigned variable-specification

These expressions name sets of variables. all is the set of all variables, none is the
empty set, free is all of the variables bound outside the current block, bound is all
of the variables bound in the current block and assigned is all of the variables for
which there exists an assignment (i.e. set!).

union setl set2 variable-specification
intersection setl set2 variable-specification
difference setl set2 variable-specification

For example, to ignore reference traps on all the variables except x, y and any variable
that is assigned to

42 MIT Scheme User’s Manual

(declare (ignore-reference-traps
(difference all (union assigned (set x y)))))

4.3.3 Fixnum arithmetic

The usual arithmetic operations like + and < are called generic arithmetic operations
because they work for all (appropriate) kinds of number.

A fixnum is an exact integer that is small enough to fit in a machine word. In MIT
Scheme, fixnums are 26 bits on 32-bit machines, and 56 bits on 64-bit machines; it is
reasonable to assume that fixnums are at least 24 bits. Fixnums are signed; they are
encoded using 2’s complement.

All exact integers that are small enough to be encoded as fixnums are always encoded as
fixnums — in other words, any exact integer that is not a fixnum is too big to be encoded
as such. For this reason, small constants such as 0 or 1 are guaranteed to be fixnums. In
addition, the lengths of and valid indexes into strings and vectors are also always fixnums.

If you know that a value is always a small fixnum, you can substitute the equivalent
fixnum operation for the generic operation. However, care should be exercised: if used
improperly, these operations can return incorrect answers, or even malformed objects that
confuse the garbage collector. For a listing of all fixnum operations, see section “Fixnum
Operations” in MIT Scheme Reference Manual.

A fruitful area for inserting fixnum operations is in the index operations in tight loops.

4.3.4 Flonum arithmetic

Getting efficient flonum arithmetic is much more complicated and harder than getting
efficient fixnum arithmetic.

Flonum consing

One of the main disadvantages of generic arithmetic is that not all kinds of number
fit in a machine register. Flonums have to be boxed because a 64-bit IEEE floating-point
number (the representation that MIT Scheme uses) does not fit in a regular machine word.
This is true even on 64-bit architectures because some extra bits are needed to distinguish
floating-point numbers from other objects like pairs and strings. Values are boxed by storing
them in a small record in the heap. Every floating-point value that you see at the REPL is
boxed. Floating-point values are unboxed only for short periods of time when they are in
the machine’s floating-point unit and actual floating-point operations are being performed.

Numerical calculations that happen to be using floating-point numbers cause many tem-
porary floating-point numbers to be allocated. It is not uncommon for numerical programs
to spend over half of their time creating and garbage collecting the boxed flonums.

Consider the following procedure for computing the distance of a point (x,y) from the
origin.
(define (distance x y)
(sqrt (+ (x x x) (x y y))))
The call (distance 0.3 0.4) returns a new, boxed flonum, 0.5. The calculation also
generates three intermediate boxed flonums. This next version works only for flonum inputs,
generates only one boxed flonum (the result) and runs eight times faster:

Chapter 4: Compiling Programs 43

(define (flo:distance x y)
(flo:sqrt (flo:+ (flo:* x x) (flo:* y y))))
Note that flo: operations are usually effective only within a single arithmetic expression.
If the expression contains conditionals or calls to procedures then the values tend to get
boxed anyway.

Flonum vectors

Flonum vectors are vectors that contain only floating-point values, in much the same
way as a string is a ‘vector’ containing only character values.

Flonum vectors have the advantages of compact storage (about half that of a conventional
vector of flonums) and judicious use of flonum vectors can decrease flonum consing.

The disadvantages are that flonum vectors are incompatible with ordinary vectors, and
if not used carefully, can in